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1 .  Introduction 

Consider a system of l inear  equations 

where A i s  a real nonsingular n x n ma t r ix ,  X and b are elements 

o f  real Euclidean n-space, En 

t h a t  the sequence {xk} , defined by an i terat ion such as 

Most of the theorems which guarantee 

Xk+, = BXk 9 c 3 k = 0, l  I 

converges t o  the solution of (1.7) require A t o  be positive def in i te ,  

or else the inverse o f  A must be nonnegative: 

(1.3) A-l >c 0 . 

( A  matr ix  which s a t i s f i e s  th i s  l a t t e r  condition i s  said t o  be monotone.) 

For example, a theorem o f  Reich (1949) says tha t  i f  A i s  symmetrjc then 

the Gauss-Seidel method converges i f  and only i f  A i s  positive definite.  

For nonsymmetric matrices 

Varga (1962)) shows tha t  i f  

the theory of M-matrices (see,  for  example, 

$ 0  for  i # j  (1 .4)  ai j 

and (1.3) holds, then bo th  the Jacobi and Gauss-Seidel methods converge. 

Finally, the theory of regular sp l i t t i ngs ,  also discussed by Varga (1962) 



provides a rather general technique f o r  obtaining i te ra t ive  methods 

which are  known t o  converge when applied to  monotone matrices. 

The theory of monotone matrices has received much attention, inde- 

pendent of i t s  connection to  convergent i terat ions e 

Hubbard (1  964) Bramble Hubbard and Thomee (1969) Price (1968) and 

others, have used properties of monotone matrices t o  obtain e r ror  bounds 

for discrete approximations t o  par t ia l  differential  equations For 

applications such as these, i t  i s  important t o  find conditions which 

are readily verified and which imply monotonicity. 

theory o f  S t i e l t j e s  matricesg and resu l t s  of Fan (1958) and Fiedler and 

Ptdk (1966) are  of in te res t .  

Bramble and 

In this  context, the 

Fan showed tha t  (1,4) together w i t h  

(7.5) AX > 0 fo r  some X 2 0 

implies t ha t  A i s  monotone, and Fiedler and P t 5 k  studied monotone 

matrices using a somewhat strengthened form of ( 1 , 5 ) *  

The purpose of this  paper i s  t o  introduce a new concept., called 

K-semi posi t ivi ty ,  w h i c h  provides an important l ink between convergence 

theory, monotonicity 9) and positive definiteness. A necessary tool for 

this discussion i s  the theory of par t ia l  orderings, which are discussed 

briefly l”n the next section. In Section 3 ,  K-semi posit ivity is  defined 

and several fundamental fac ts  are proved. The connections t o  positive 

definiteness and monotonicity a re  developed in Section 4,  and the f inal  

section contains applications of these results t o  Jacobi’s method and 

the theory o f  regul a r  spl i ttings 
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2 .  Partial  Ordering i n  En 

The notation used here is  essent ia l ly  that  of Vandergraft (1968). 

In par t icular ,  a - cone i n  En will be a closed subset K which has a 

nonempty in te r ior  and s a t i s f i e s  a K c  K 2 0 K + K r K  and 

K ( 7  { - K l  = (0) . The boundary of a cone K i s  denoted by g K  the 

in te r ior  by KO e The partial  ordering induced by K i s  denoted by 
K K h K  ; t ha t  i s ,  X 2 Y means X - Y E K e and X > Y means X - Y E KO * 

If A i s  an n x n matrix, then A i s  called K-nonnegative ( A  2 0)  

i f  AX E K for  any X E K and A i s  #-positive ( A  > K O )  i f  AX E KO 

for  a l l  X E K X f 0 . Finally, A i s  K-monotone i f  

AX E K implies X E K I t  i s  simple t o  prove t h a t ,  i f  A i s  non-  

singular,  then A i s  K-monotone i f  and only i f  A - l  hK0 e 

K 

T h r o u g h o u t  t h i s  paper, resul ts  concerning K-nonnegative matrices 

will be used. Most o f  these resul ts  are d i rec t  extensions of the class- 

i cal Perron- Frobeni us theory of nonnegative matri ces (see Gantmacher 

(1960)) and will not be restated here. There a reg  however, two rather 

speci a1 resul ts  concerning K-nonnegative matrices which w i  11 be of 

some use. 

K Lemma 2 , l  I f  A is  a nonsingular matrixg then A 2 0 i f  and only 

i f  x E KO implies AX E KO 

Proof Suppose AX E KO for any X E KO e I t  suffices t o  show 

AY E K for any Y E 6K. B u t ,  If AY $ K for some Y E 6K 

then since K i s  closed, there i s  a neighborhood S of Y 

wlth A ( S ) f ?  K = 8 B u t  S contains points i n  KO 
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so A(S) n K # fl e This  c o n t r a d i c t i o n  imp l i es  AY E K e Conversely, 

suppose A >KO b u t  AX E BK f o r  some X E KO Using Lemma 2.1 o f  

Vandergraf t  (1968) i t  fo l l ows  t h a t  t h e  s e t  S = { Y :  0 s Y s X I  

the p roper t y  t h a t  A(S)  c H where H i s  a subspace o f  dimension l ess  

than n . But  us ing  the  f a c t  t h a t  X E KO i t  fo l l ows  t h a t  f o r  any 

Z E K aZ E S f o r  some a > 0 e Thus aAZ = A(aZ)  E H , and hence 

AZ E H . 
Z19Z2 E K The above ana lys i s  shows t h a t  AY E H and hence A i s  

s ingu la r  

K has 

But  any Y E En can be w r i t t e n  as Y = Z1 - Z2 where 

The nex t  r e s u l t  f o l l ows  e a s i l y  from Theorem 3.1 of Vandergraf t  

(1 968). 

Lemma 2.2 I f  A i s  symmetric and p o s i t i v e  d e f i n i t e ,  then there  i s  
K a cone K w i t h  A 0 . 

- 4 -  



3. K-Semi Positive Matrices 

Throughout this section, K will  denote some fixed cone i n  E n  

and A i s  an n x n matrix, We begin w i t h  our  basic definit ion,  which 

i s  an obvious generalization of (1.5) e 

Definition The matrix A i s  called K-semi positive i f  

A ( K O ) ~  KO + IT, I 

If  K i s  the usual cone o f  vectors w i t h  nonnegative componentsg 

then the class of K-semi positive matrices i s  identical w i t h  the class 

S defined by Fiedler and P t d k  (1966).  

i n g  new terminology i s  two-fold. Ffrst, i t  i s  convenient t o  show 

expl ic i t ly  the dependence on the cone K , and secondly, Lemma 2.1 

shows t h a t ,  for nonsingular matrices K-nonnegativity i s  equivalent t o  

A ( K o )  c K o  The above definition i s  merely a weakening of this condition. 

I t  i s  important -to note, however, t ha t  unlike K-nonnegativity, the concept 

o f  K-semi posi t ivi ty  does n o t  induce a partial  ordering on the space o f  

n x n matrices, For example, i f  A = 

vectors w i t h  nonnegative componentsg then both A and - A  are 

K-semi positive. 

equivalent t o  tha t  o f  the definit ion i s  A ( K )  f )Ko # fl e 

The jus t i f ica t ion  for introciuc- 

-, 2 -1 3 ,  and K i s  the cone o f  

Finally, i t  i s  c lear  t h a t  a condition which i s  

I n  the next lemma, we summarize some useful facts  about nonsingular 

K-semi pos i ti  ve matrices 

Lemma 3.1 I f  A i s  nonsingular, then 

1 " )  A i s  K-semi positive i f  and only i f  A - l  i s  K-semi positive. 

i i )  If  A i s  K-monotone, then A i s  K-semi posit ive,  
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The proof i s  a t r i v i a l  application o f  the definit ion and will be 

omitted. Simple examples show t h a t  the converse o f  part i i )  i s  n o t  true.  

We next prove a fundamental resul t  connecting K-semi -posi t i v i  ty  

and convergence. Recall t h a t  a matrix A i s  convergent i f  the spectral 
0 0 ,  

radius p(A) i s  less thaii 1 ;  or equivalently, 1 AK converges. 
k=O 

K Theorem 3.1 If A < I then A i s  K-semi-positive i f  and only i f  

I - A i s  convergent. (Equivalently, i f  B >, 0 then B i s  convergent 

i f  and only i f  I - B i s  K-semi-positive,) 

K 

Proof If A 5s K-semi-positive, then AY E KO for  some Y E KO. 

Let X be an eigenvector in K of I - A corresponding t o  the eiaenvalue 

p = @(I-A) ,  and l e t  

to = sup{ t  > 0 : t X  G K Y L  

Since Y E KO, such a number to exis t s ,  is positive and f i n i t e .  

more $ 

Further- 

K K 
p t o  X = t O ( I - A ) X  6 (I-A)Y = Y - AY < Y 

hence @to < to and thus p < 1 which says that  I - A i s  convergent. Converse- 
00 

l y 9  i f  I - A i s  convergentg then the ser ies  1 ( I -A)K converges t o  and 
k=O 

since each term i s  K-nonnegative, i t  follows t h a t  the sum i s  a l s o  K-non- 

negative. Thus A-’ 2 K O ,  so A i s  K-monotoneg and by Lemma 3.1, A is  

K- s emi - pos i t i  ve (. 

K This proof actually shows t h a t  i f  A G I and I - A i s  convergent, then 

A-l,KO, For K the cone of vectors w i t h  non-negative componentss this  was 

proven by Kuttl e r  (1  970) 
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K The auxillary condition A 6 I which appears i n  t h i s  theorem, 

i s  related t o  condition (1.4) ( a i j  < 0 i # j )  a In f ac t ,  a 

d i rec t  generalization of (1-4) i s  

K (3.1) aA s I for  some a > 0 

In Section 4 ,  this condition will be discussed further.  

We next give a spectral characterization o f  K-semi posit ivi  ty 

K Theorem 3.2 I f  A-C. I then the following statements are  equivalent. 

i )  A i s  K-semi positive 

i i )  All eigenvalues of A have positive real p a r t  

i i i )  All real eigenvalues of A are positive. 

K Proof I f  I - A 2 0 then p(1-A) i s  an eigenvalue of 4 - A 

T h u s ,  i f  A has eigenvalues X1 J 2 3 0  e J then p( I-A) = 1 - hr  

where A r  i s  real and 
n 

(3.2) 

T h i s  shows t h a t  the eigenvalues of A l i e  inside a c i r c l eg  with center 

a t  1 which 'passes through h r  where A, s a t i s f i e s  

x c x  r 1" 9 A i  rea 1 

Now, i f  i )  holds, then by Theorem 3.1, 

1 - x r  < 1 

t i < > ,  Conversely, i f  e i ther  i i )  o r  i i i )  holds ,  then X r  > 0 and 

I - A i s  convergent so  

Hence Xr > 0 and (3.2) implies i i )  while (3.3) implies 
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p(1-A) = 1 - h ,  < 1 so I - A i s  convergent. Again invoking 

Theorem 3-1 ,  we conclude t h a t  i )  i s  true. 

Fan (1958) showed t h a t  i f  A s a t i s f i e s  (1*4)  and i s  nonsingular, 

then A-l 2 0 i f  and only i f  a l l  eigenvalues of A have positive real 

part .  Hence the above theorem i s  an extension o f  Fan's resul t .  
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4. Monotonicity and Positive Definiteness 

In th i s  section we will investigate further the relationship between 

K-monotone posi t i  ve definite and K-semi posi t i  ve matri ces a Observe 

f i r s t ,  t h a t  Theorem 3.2 shows t h a t ,  i f  A i s  symmetric, K-seml" positive, 

and A G I , then A i s  positive definite.  The converse of th i s  i s  

contained i n  our next theorem, 

K 

Theorem 4.1 If  A i s  symmetric, then A i s  positive definite i f  
K and only i f  for some cone K A i s  K-semi positive and a A  6 I for 

some a > 0 e 

K Proof I f  A i s  K-semi positive and a A  5 I then Theorem 3 . 2 ,  

applied t o  aA shows t h a t  a A  hence A i s  positive def ini te ,  

Conversely, i f  A i s  positive def ini te ,  w i t h  p ( A )  = p s  then for 

any a > 0 such t h a t  a < l / p  I - a A  i s  also positive definite,  

By Lemma 2.2, I - aA 2 0 

of  A have positive real p a r t ,  so by Theorem 3.2, A i s  K-semi positive. 

The number a i n  th i s  theorem cannot, in general be replaced by 1 . 

K for some cone K . Moreover, a l l  eigenvalues 

To verify th i s ,  consider the matrix 

A =  

1 1 
- 2  2 1 

1 
' 2  

1 
- 2  1 
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1 1  whose eigenvalues are 2 7 2 Clearly, A i s  positive def in i te ,  

b u t  i f  there were a cone K w i t h  A 6 I then p(1-A) would have t o  

be an eigenvalue of I - A , which certainly i s  n o t  true,  Thus, the 
K condition A i s  K-semi positive and A 6 I I’ i s  somewhat stronger 

then positive definiteness 

We next consider K-monotone matrices and show how they are related 

K 

t o  K-semi positive matrices. 

K Theorem 4.2 I f  A i s  K-semi posit ive,  and aA & I for some 

a > 0 then A i s  nonsingular and K-monotone. 

Proof Since a > 0 aA i s  also K-semi posit ive,  and Theorem 3.1 

shows t h a t  I - aA i s  convergent. Furthermore, 0 GKC(I-aA)K = (aA)-’ = 

a-’A-’ hence A 2 0 and A i s  K-monotone. -1 K 

K The condition aA & I a > 0 i s  a special form o f  

Using th i s  more general condition, we obtain: 

Theorem 4,3 Let A be nonsingular, Then A i s  K-monotone i f  and 
K only i f  A i s  K-semi posit ive,  and there exis ts  a nonsingular B 2 0 

with B A G  I K 

1 Proof  I f  A i s  K-monotone then A i s  K-semi posit ive,  and B = A- 
K s a t i s f i e s  the conditions of the theorem. Conversely, i f  B >c 0 and 

BA C K I then, by Theorem le02, A - I B - ~  = ( ~ ~ 1 - l  >Kg . Since B 3 K o th i s  

implies A-’ hK0 which shows that A i s  K-monotone. 
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A simple rephrasing o f  a theorem o f  Price (1968) shows t h a t  A 

i s  monotone i f  and only i f  there i s  a nonsingular matrix B w i t h  

B r 0 BA 6 I and I - BA convergent. This resul t  can also be 

obtained from Theorem 4.3 together w i t h  Theorem 3.1 a 

Cond i t ion  (4.2)  has been used by Ortega and Rheinboldt (1967) i n  

the study o f  i t e ra t ive  methods for  nonlinear equations, 

w i t h  the i r  terminology, we will call  a matrix B which sa t i s f i e s  (4.2)  

a K-positive l e f t  subinverse o f  A e 

K i f  B i s  a r i g h t  subinverse, AB I * )  

We conclude th i s  section w i t h  the following summary of several of 

In keeping 

(Obviously the proof also holds 

our res ul t s  

A i s  
T 

defi n i  t e  

and has a K-posl’tive 
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5. Convergence Theorems 

The r e s u l t s  of preceding sec t ions  w i l l  now be used t o  prove some 

use fu l  convergence theorems. We begin w i t h  a s imple a p p l i c a t i o n  t o  

Jacobi ‘ s  method. 

Theorem 5.1 L e t  A be a m a t r i x  which has u n i t  diagonal. I f ,  f o r  

K some cone K A i s  K-semi p o s i t i v e  and A I , then the  Jacobi method 

converges 

Proof  The Jacobi i t e r a t i o n  m a t r i x  i s  J = I - A e The hypotheses 

say t h a t  J 2 0 and I - J = A i s  K-semi p o s i t i v e ,  so by Theorem 3.1, 

J i s  convergent, 

K 

If  A i s  symmetric, w i t h  u n i t  d iagonal  then the  convergence of the 

Jacobi method i m p l i e s  t h a t  a l l  eigenvalues o f  I - A are l ess  than 1 

i n  modulus. C lea r l y ,  t h i s  imp l i es  t h a t  A i s  p o s i t i v e  d e f i n i t e .  Using 

Theorem 4.1 we conclude t h a t ,  i f  the  Jacobi method converges, then A 
K i s  K-semi p o s i t i v e ,  and f o r  some a > 0 aA S I ., Note t h a t  t h i s  

statement i s  nea r l y  the  converse o f  Theorem 5.1, The m a t r i x  

A =  

1 

1 
I” P 

1 
T 

1 
- P  

1 

1 
‘ T  

1 
P 
1 

- B  

1 

whose eigenvalues are  B T 7 shows t h a t  we may - n o t  take a = 1 i n  

t h i s  statement, On the  o ther  hand, the  m a t r i x  (4.1) shows t h a t  UA I 

f o r  some c1 > 0 

K 

i s  n o t  s u f f i c i e n t  t o  prove Theorem 5.1. 
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If  Reich’s theorem, which was s ta ted i n  the introduction, i s  

reworded, using Theorem 4.1,  we obtain a theorem for  the Gauss-Seidel 

method which i s  quite similar t o  the above resul ts  for  Jacobi ‘ s  method, 

Theorem (Rei ch) I f  A i s  symmetric then Gauss-Sei del converges 

i f  and only i f  aA cKI  and A i s  K-semi posit ive,  fo r  some cone K , 

and some a > 0 e 

We next turn to the theory of regular sp l i t t ings .  Following Varga 

(1962),  we will say t h a t  A = M - N 

N M i s  nonsingular, and M-l xKO For the case where K i s  

i s  a K-regular sp l i t t i ng  i f  

the cone of nonnegative vectors Varga proves that  the i terat ion 

converges t o  the solution o f  AX = b whenever A-’ >, 0 The next 

theorem improves and extends this  resu l t ,  

Theorem 5,2 Let A = M - N be a K-regular sp l i t t i ng .  Then ( 5 , l )  

converges i f  and only i f  A i s  K-semi positive. 

Proof By definit ion,  I - M-lA = M-lN 2 0 hence i f  A i s  

K--semi posit ive,  then so i s  

i s  convergent. Conversely, i f  M - l N  i s  convergentg then 

M-’A , and Theorem 3.1 shows t h a t  M-’N 

0 4<KC(M-’N)k = (M-’A)-’ = A-lM B u t  PI-’ so A-’ hKO and 

hence A i s  K-semi positive, 

Using Theorem 4.2 ,  we can replace the hypothesis M-l kKO by 

a somewhat simpler condition. 
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K K Corollary Let A = Pl - N where N 2 0 I) aM g I f o r  some 

a < 0 and M i s  K-semi positive. Then ( 5 , l )  converges i f  and only 

i f  A i s  K-semi positive. 

We conclude by applying these resul ts  t o  a matrix derived by 

Bramble and Hubbard (1964). 

i s  applied t o  a l inear  two-point boundary value problem, the result ing 

mat r ixg  a f t e r  dividing by diagonal elements, i s  

I f  a certain fourth order discretization 

1 

-1 
2+k2q ( h )  

24+1 2h2q(  2 h )  

A =  
1 

0 

0 

1 

-4 
6+3h2q( 2 h )  

1 
24+1 2h2q (3h) 

0 0 0 * e *  

0 0 s e e  

-1 
2+h2q ( h )  

-4 1 
6t3h2q(2h) 24+12h2q( 2 h )  

1 

1 e . * *  

-4 
6+3h2q( 3h) 

where h 3 0 

the different ia l  equation. 

Bramble and Hubbard show tha t  A is  monotones and t h a t  the “backward- 

forward Gauss-Seidel method” 

i s  the mesh spacing, and q ( x )  > 0 i s  a coefficient in 

After a rather long and tedious analysis,  

converges. (Here, we have written A = I - L - U where L l! are lower 

and upper tr iangular,  respectively.) Using the results of this section, 
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we can simplify this analysis considerably, F i r s t  of a l l  from the 

f ac t  t ha t ,  for  small h > 0 the row sums for rows 3 ,  4 ,  m s  h - 2 are  

negative, one can construct a nonsingular matrix B with B >, 0 B A  s I 

(S t a r t  w i t h  a matrix of a l l  Modify the f i r s t  few and l a s t  few rows, 

so  tha t  BA has nonpositive off-diagonal. Next modify further,  so tha t  

B i s  nonsingular, and multiply by a small constant so tha t  BA 6 I . )  

Next, i f  h i s  small enough, i t  i s  easily seen tha t  AX > 0 where 

1 ’ s .  

X = (1,5,10,10 l o  9 10’o’o..e)T so  A i s  semi positive. Theorem 4.3 can 

now be applied t o  show tha t  A-l 2 0 for small h . 
To prove convergence of (5.2) consider the cone 

K A suff ic ient  condition for B 0 i s  that  

n 1 b i j  2 0 j = 1 92,...,n 
i =1 

(5.3) 

and e i ther  

(5.4) 

or 

i + j  (505) (-1) b i j  >, 0 

Now4 l e t  A, be the matrix A w i t h  h = 0 and write A, = I - L - U 

Then the i terat ion (5.2) i s  of  the form (5.1) where 

[v = LU 

M = (I-L)(I-u) 
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By examining L and u one sees t h a t  -L and -U both sa t i s fy  

(5.3) and (5.5).  Hence -L 2 0 -U >r 0 and N = L - U 2 0 

Next, we note tha t  fo r  small a, I - aM has positive diagonal 

elementsg which approach 1 as a becomes small and the off-diagonal 

elements tend t o  zero as a + 0 . Hence, fo r  small a ,  I - M sa t i s -  

f i e s  (5 ,3)  and (5 .4)$  so alvl cKI fo r  some a > 0 Finally, i f  

X = ( l , 0 9 e e m 9 0 ) T  then X E K and AoX = MX = (l,-T/2,1/24,0,..,,0) E K 

so A, and Pl are K-semi positive. B u t  then, the hypotheses of the 

corollary t o  Theorem 5,2 a re  sa t i s f ied ,  and hence (5.1) converges. By 

continuity, (5.1) also converges for a l l  h suff ic ient ly  small e 

K K K 

T o  
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